Samuel Alexander

System Administration

46
Friends
0
Followers
136
Following
3
Spaces
Profile picture of Samuel Alexander
·
Visible also to unregistered users
## Smarter Demand Forecasting for Fast Fashion: Hybrid Models for a Dynamic Market [![](https://events.vtools.ieee.org/vtools_ui/media/display/54533014-8617-44ba-bcc0-1ef4b814d95e)](https://events.vtools.ieee.org/event/register/476734) - Date: **10 Apr 2025-**Time: **11:30 PM UTC to 01:00 AM UTC** - ![Add_To_Calendar_icon](https://events.vtools.ieee.org/assets/Add_To_Calendar-22bfc8a6ff082b5eb53083d044fd6582c9fb44f1e1021fd33f3ce909bd70878a.png) Add Event to Calendar ![iCal Icon](https://events.vtools.ieee.org/assets/iCal_Icon-522a8e40309c62b3241b4008ab834c25416e576029b06e86015a5a1cf7c48b79.png) [iCal](https://events.vtools.ieee.org/event/476734/ical)\ ![Google Calendar Icon](https://events.vtools.ieee.org/assets/Google_Cal_Icon-3c4605cd23e2ba360cf55d18eee36a0ce929534333a28cb48dd94f662f2cba81.png) [Google Calendar](https://www.google.com/calendar/event?action=TEMPLATE&text=Smarter%20Demand%20Forecasting%20for%20Fast%20Fashion:%20%20Hybrid%20Models%20for%20a%20Dynamic%20Market&dates=20250410T233000Z/20250411T010000Z&details=Forecasting%20the%20demand%20for%20new fashion products%20in%20the%20fast fashion industry%20is%20a%20com-plex%20task%20due%20to%20its%20dynamic%20nature,%20short%20product%20life%20cycles,%20and%20limited%20historical%20data.Traditional%20forecasting%20models%20often%20fail,%20leading%20to%20inefficiencies%20such%20as%20overproduc-tion%20or%20underproduction.%20This%20paper%20reviews%20key%20challenges%20and%20explores%20innovativemachine%20learning%20(ML)%20and%20artificial%20intelligence%20(AI)-based%20models%20to%20improve%20fore-cast%20accuracy.%20We%20propose%20a%20hybrid%20AI-driven%20approach%20that%20integrates%20structured%20andunstructured%20data%20sources,%20real-time%20monitoring,%20and%20ensemble%20models%20to%20address%20fore-cast%20limitations%20in%20the%20fast fashion%20industry.&location=Virtual:%20https://events.vtools.ieee.org/m/476734&trp=true) - Location - This event has virtual attendance info. Please visit [the event page](https://enotice.mmsend.com/link.cfm?r=T0lPp1mRFbDEysKUSNYVrA\~\~&pe=c5xNJsnp_v8Es5ktrMwUUlE9LiMBOCIjog7YMt7d98DXj0X5wIq8ekk-RyI8ODyaYi4ksrde-J6vTGTM9x0Fyw\~\~&t=8HgaQOiI9bW9OO_CSW8kBA\~\~ "https://enotice.mmsend.com/link.cfm?r=T0lPp1mRFbDEysKUSNYVrA~~&pe=c5xNJsnp_v8Es5ktrMwUUlE9LiMBOCIjog7YMt7d98DXj0X5wIq8ekk-RyI8ODyaYi4ksrde-J6vTGTM9x0Fyw~~&t=8HgaQOiI9bW9OO_CSW8kBA~~") to attend virtually. ### Hosts - [Southwestern USA - Region 5](mailto:john.santiago@ieee.org?subject=Smarter%20Demand%20Forecasting%20for%20Fast%20Fashion%3A%20%20Hybrid%20Models%20for%20a%20Dynamic%20Market%20-%20Southwestern%20USA%20-%20Region%205 "mailto:john.santiago@ieee.org?subject=Smarter%20Demand%20Forecasting%20for%20Fast%20Fashion%3A%20%20Hybrid%20Models%20for%20a%20Dynamic%20Market%20-%20Southwestern%20USA%20-%20Region%205") - [Contact Event Host](https://enotice.mmsend.com/link.cfm?r=T0lPp1mRFbDEysKUSNYVrA\~\~&pe=cMIzMnm98CGg3CmSrtnYxrNReiFcnKEMxEN2yBxQyjTlovlCZn5lTzK1F8OQak4yyVnuqizotMwp1Adhvt08kQ\~\~&t=8HgaQOiI9bW9OO_CSW8kBA\~\~ "https://enotice.mmsend.com/link.cfm?r=T0lPp1mRFbDEysKUSNYVrA~~&pe=cMIzMnm98CGg3CmSrtnYxrNReiFcnKEMxEN2yBxQyjTlovlCZn5lTzK1F8OQak4yyVnuqizotMwp1Adhvt08kQ~~&t=8HgaQOiI9bW9OO_CSW8kBA~~") [Contact Event Host](https://enotice.mmsend.com/link.cfm?r=T0lPp1mRFbDEysKUSNYVrA\~\~&pe=cMIzMnm98CGg3CmSrtnYxrNReiFcnKEMxEN2yBxQyjTlovlCZn5lTzK1F8OQak4yyVnuqizotMwp1Adhvt08kQ\~\~&t=8HgaQOiI9bW9OO_CSW8kBA\~\~ "https://enotice.mmsend.com/link.cfm?r=T0lPp1mRFbDEysKUSNYVrA~~&pe=cMIzMnm98CGg3CmSrtnYxrNReiFcnKEMxEN2yBxQyjTlovlCZn5lTzK1F8OQak4yyVnuqizotMwp1Adhvt08kQ~~&t=8HgaQOiI9bW9OO_CSW8kBA~~") - Forecasting the demand for new fashion products in the fast fashion industry is a com- plex task due to its dynamic nature, short product life cycles, and limited historical data. Traditional forecasting models often fail, leading to inefficiencies such as overproduc- tion or underproduction. This paper reviews key challenges and explores innovative machine learning (ML) and artificial intelligence (AI)-based models to improve fore- cast accuracy. We propose a hybrid AI-driven approach that integrates structured and unstructured data sources, real-time monitoring, and ensemble models to address fore- cast limitations in the fast fashion industry. [https://events.vtools.ieee.org/event/register/476734](https://events.vtools.ieee.org/event/register/476734)